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EXECUTIVE SUMMARY 

Many bridges in the State of Louisiana and the United States are working under serious 

degradation conditions where cracks on bridges threaten the structural integrity and public 

security. To ensure the structural integrity and public security, it is required that bridges in the US 

be inspected and rated every two years. Currently, this biannual assessment is largely implemented 

using manual visual inspection methods, which is slow and costly. In addition, it is challenging 

for workers to detect cracks in regions that are hard to reach, e.g., top part of bridge tower, cables, 

mid-span of the bridge girders and decks. As unmanned aerial vehicles (UAVs) become more and 

more popular, researchers started to resort to mages and videos from places which are hard to 

reach. Especially for bridges, UAVs can quickly fly to the desired locations to take images and 

videos. Hence, it is promising to integrate the deep learning method with UAV images to develop 

an automatic crack damage identification method. 

This research develops an efficient low-cost deep learning-based methodology to identify cracks 

on bridges using computer vision-based technique and deep learning. The main objectives of this 

research are: (1) development of a programmable unmanned aerial vehicle that can fly along 

desired trajectory; (2) collection of images of target structures using a UAV camera; (3) 

development of a deep CNN model using collected images and their augmentation; and (4) 

identification of cracks using the learned deep learning model.  

The Convolutional Neural Networks (CNN) deep learning method is used to identify cracks from 

images. In this research, a programmable drone is developed that can fly along pre-defined 

trajectory. A large volume of images was collected from local bridges and pavements using drones. 

The collected images were preprocessed and divided into around forty thousand 256 by 256-pixel 

sub-images and fed into the CNN model. Data augmentation techniques are applied to increase the 

number of images in some cases. Parameters of the selected CNN model were optimized to obtain 

the best configuration. To evaluate the performance of the method, images from a different local 

bridge were used for testing. Research results show that with the optimized CNN model, cracks in 

the images can be identified efficiently and accurately. The developed methodology can also 

category the cracked image as slight, moderate, or severe cracking based on a pre-defined 

quantification index.  The research outcomes of this project on one hand provide a large dataset 

that can be used to train machine learning models to identify cracking damage. On the other hand, 

the developed method and the associated optimized CNN models have the potential to automate 

crack damage identification of bridge key components in a cost-effective manner. Also, the 

developed methodology is expected to facilitate crack damage identification for other 

transportation infrastructures, e.g., pavement, highway traffic sign, and traffic signal structures. 
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1. INTRODUCTION 

1.1. Computer Vision-based Crack Damage Identification 

Recent advances in computer vision and image processing techniques have provided an automatic 

visual monitoring system that can capture structural damage via processing the images or videos. 

This method doesn’t require the incorporation of expensive sensors and is less dependent on labor 

work and experts’ experience in comparison with traditional manual inspection methods. Various 

image processing techniques have been proposed for machine vision purposes including the 

generative adversarial network (1), convolutional neural network (CNN) (2), seeded region 

growing algorithm (3) and edge detection (4). Recently, vision-based crack identification has been 

investigated and received more and more research effort.  

Digital image correlation (DIC) technique compares changes of digital images at different 

deformation stages to measure deformation and strain and to detect cracks. However, DIC requires 

precise camera alignment and reference points of a target surface, which is suitable for lab testing 

and might not be practical for real life structures. In comparison with to DIC, vision-based crack 

identification method is more practical and widely accepted due to its advantages of simplicity, 

noncontact, cost effectiveness, and intuitive interpretation of data (5-6). In recent years, computer 

vision-based technique is emerging as an effective tool for structural damage identification of a 

wide range of civil, mechanical and aerospace structures. Although computer vision and image 

processing techniques have been proposed for crack identification, complicated background 

information from a real bridge structure is always involved in the images, such as handwriting 

scripts during human inspection, electrical wires of sensors for health monitoring, and desultory 

edges of welding joints. All these image background noises will result in errors in the identification 

of cracks. Therefore, advanced algorithms are required for crack identification based on images 

with complicated information. 

Application of vision-based inspection and monitoring includes deflection measurement (7-9), 

detection of concrete spalling (10-11) and steel corrosion (12). Existing methods to detect cracks 

from images include the image binarization method (13), the stereo-vision method (14) and 

sequential image processing (15). Abdel et al. (16) evaluated the performance of four methods for 

crack detection of bridges: fast Haar transform (FHT), fast Fourier transform, Sobel and Canny. 

The authors found that the FHT is the most effective technique in identifying bridge cracks. 

Prasanna et al. (17) developed an automatic crack detection algorithm STRUM (spatially tuned 

robust multifeature) classifier to detect cracks on concrete structures. It was found that the 

proposed STRUM can provide accurate crack detection of concrete structures.  

To detect cracks in inaccessible areas, robotics and unmanned aerial vehicles (UAVs) were used. 

Ho et al. (18) used cameras mounted on cable climbing robotics, image processing and pattern 

recognition techniques to detect damage of bridge cables. It was found that the proposed method 

could be used to detect damage of bridge cables. Zhong et al. (19) used a UAV camera to detect 

cracks on concrete surfaces. Ellenberg et al. (20) used UVA camera images to quantify bridge 

related damaging including deflection, corrosion and cracks. The results indicated that the 

developed post‐processing algorithms were able to extract quantitative information from UAV 

captured imagery.  
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Although the combination of UAV cameras and vision-based technique can provide damage 

information via graphing of inaccessible areas and extensive structures, it is still limited and time 

consuming to process thousands of target images to extract accurate damage information. Images 

directly taken using UAV cameras need to be de-noised, standardized and reconstructed for 

extraction of damage information. To improve image processing efficiency, machine learning 

techniques have been used and shown effective. In recent years, as an emerging technique, deep 

learning, which refers to artificial neural networks with many hidden layers for enhanced 

performance, is spotlighted and shown promising for efficient image processing and damage 

identification.  

Zhao et al. (21) developed a traffic surveillance system using deep learning and speeded-up robust 

features (SURF) to track vehicles and their movements. Zhang et al. (22) used convolutional neural 

network (CNN) deep learning method for road crack detection. To overcome the challenges from 

real-engineering structures, e.g., lightening and shadow changes, Cha et al. (23) developed a CNN-

based method for concrete crack detection. It was found that the proposed CNN using Canny and 

Sobel edge detection methods can find concrete cracks in real structures. Tong et al. (24) proposed 

a CNN-based method for crack length measurement. The authors used k-means clustering analysis 

to calculate the pre-extract cracks’ properties which were used for training and testing. It was found 

that the accurate crack length recognition can be achieved. Till now, most existing literature on 

crack identification using vision- and machine learning-based techniques have been validated via 

laboratory testing. However, the images (crack and intact) used in most existing literature don’t 

include various challenging conditions that widely exist in real-life structures (e.g., human-made 

markings). In addition, there will be image distortion, lightening, edges and shadow issues when 

using an UAV camera. All these deficiencies in existing methodologies need to be addressed. In 

other words, there is a lack of a framework that can implement UAV image sensing and automatic 

image processing for accurate damage identification of both laboratory and real-engineering 

structures.    

Therefore, an automatic vision- and deep learning based crack detection method will be developed 

in this research to detect cracks among a large dataset of images recorded under field conditions. 

One of the key contributions of this project is the development of multiple classes including non-

crack objects using training data collected online, which makes the trained deep learning model 

capable to cover a wide range of field environment. The proposed methodology is envisioned to 

facilitate the regular inspection of concrete bridges and other aging civil structures and accelerate 

the assessment of detailed crack distribution without losing accuracy using various cameras and 

vision devices, such as drones. Specific research activities include: (1) collection of a large volume 

of images from the Internet with subsequent categorization into five classes (intact surfaces, 

cracks, multiple joints and edges, single joint or edge, etc.); (2) collection of images of target 

structures using a UAV camera; (3) development of an image processing method and a deep CNN 

model using collected images and their augmentation; and (4) identification of cracks using the 

learned deep learning model. 

1.2. Programmable Unmanned Aerial Vehicles (UAVs) 

Unmanned aerial vehicles (UAVs) become popular since 2010s. In general, a quadrotor is a type 

of rotorcraft that uses two pairs of counter-rotating, fix-pitched blades for lift. The use of fixed-

pitched blades allows quadrotor propellers to often be connected directly to four individual motors 

without the need for complicated linkages that control pitch. These motors are then connected in 
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an ‘X’ configuration. To power and control the rotors, a battery and microcontroller are placed 

near the center of the craft. Changes to the altitude and attitude (the height and orientation with 

respect to the ground) of the craft are achieved by varying the speed of individual rotors. With 

such a straightforward design, it is easy to build vehicles that are much smaller than traditional 

rotorcrafts. The quadcopters for personal entertainment found applications in tourism, light show, 

etc. Soon, we can reasonably expect autonomous micro aerial vehicles to engage in many critical 

operations, namely reconnaissance, search-and-rescue, environmental monitoring, security 

surveillance, inspection, law enforcement, etc. Due to their aerial maneuvering ability, these robots 

can easily avoid obstacles, explore, create map, and monitor activities in the area. With further 

progress in energy storage and downscaling, they can operate in spatially restricted outdoor and 

indoor environments, e.g., forests or urban public areas, while still maintain the lowest disturbance 

to environment and the inhabitants within. Vision has been one of the key technologies that have 

been studied for application in navigation, mapping, surveillance and tracking due to its human-

like perception capability. Drone technologies could be a potential efficient tool for bridge 

inspection, cracking detection, and predict structural degradation.  

To evaluate the capability of drones in bridge detection, this project investigates the ability of 

drones to navigate and take videos and images. An extensive search on the existing commercial 

drones was conducted to gain knowledge of capabilities of drone inspection practices. Based on 

the knowledge obtained from the technical survey, the budget limitations, and future expandability 

for broad applications, we built a drone from scratch. Preliminary inspections of bridges were 

conducted by taking videos. After preliminary data were collected, the drone was controlled to 

take pictures of cracks on bridges. The images and videos obtained from the inspections were 

analyzed offline. Our developed drone can take off and land autonomously. It can follow 

predesigned trajectories by input the GPS location information. Finally, this project covered the 

merits of bridge inspection using drones, potential challenges, and conclusion, along with future 

idea to continue the project and extend the functionalities of the fully programmable drone.  

1.3. Research Objectives and Tasks 

This research project aims to (1) development of a programmable unmanned aerial vehicle that 

can fly along desired trajectories to take images and videos; (2) collection of large volume of 

images from local bridges and pavements using a UAV camera; (3) development of a deep CNN 

model using collected images and their augmentation; and (4) identification of cracks using the 

learned deep learning model. The major contributions of this research work contain the following 

four aspects: 

(1) A thorough literature review has been conducted on the existing research on aerial imaging, 

image processing, segmentation, and reconstruction. Also, existing literature on computer vision-

based crack damage identification has been reviewed, which is the basis of the proposed method 

in this project. 

(2) A prototype UAV has been assembled and programed based on PX4 autopilot platform from 

scratch. The developed drone can take off and land autonomously. It can follow predesigned 

trajectories by input the GPS location information.  

(3) A large volume of images (with and without cracks) has been collected from local bridges, 

buildings, and pavements. The obtained dataset covers images from different bridge components 

(decks, girders, and piers) with four representative cracking severities: intact, minor cracking, 
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moderate cracking, and severe cracking. It is noted that images with background noises, such as 

road boundary marker on were included in the dataset for identification. Also, cracking images 

with quantified crack width were collected. The collected comprehensive dataset of images and 

videos can be used to identify cracking damage of a large set of concrete bridges and pavements.  

(4) A deep convolutional neural network-based computer vision methodology for efficiently 

identifying cracks in bridges and pavements has been developed. Four CNN model architectures, 

ResNet, GoogLeNet, VGG, and AlexNet were selected, and the corresponding parameters were 

optimized. Python based codes were developed for training, testing, and validation of the CNN 

models to efficiently identify cracks.  
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2. OBJECTIVES 

The main objectives of this research are: 

(a) To assemble and program a prototype UAV that can fly following predesigned trajectories 

based on PX4 autopilot platform from scratch. 

(b) To collect a complete dataset of intact and cracked images (with minor cracking, moderate 

cracking, and severe cracking) from key components of local bridges, buildings, and pavements; 

and   

(c) To propose a deep convolutional neural network-based computer vision methodology for 

efficiently identifying cracks in bridges and pavements. 
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3. LITERATURE REVIEW 

3.1. Structural Health Monitoring of Bridges 

A large number of bridges in the State of Louisiana and the United States are working under serious 

degradation conditions where cracking is a major issue that threatens the bridge structural integrity 

and public security. According to the 2021 ASCE infrastructure report on bridges (25), 42% of all 

the nation’s bridges are at least 50 years old and 7.5% of the bridges are considered structurally 

deficient. To ensure the structural integrity and public security, it is required that bridges in the US 

be inspected and rated every two years. Currently, this biannual assessment is largely implemented 

using manual visual inspection methods, which is slow and costly. In addition, it is challenging 

for workers to detect cracks in regions that are hard to reach, e.g., top part of bridge tower, cables, 

mid-span of the bridge girders and decks. It is possible that there will be cracks undetected during 

inspection, which might cause bridge to collapse when the undetected damage on load-carrying 

members is beyond the critical level.   

To efficiently identify structural damage of bridges, structural health monitoring (SHM) of bridges 

has been an active research area for the past two decades. Basically, the SHM methods fall into 

two categories: model-based methods and data-based methods (26). Model-based methods are 

commonly based on a Finite Element (FE) model representing the structure of interest. The basic 

idea is that once an initial FE model is created, measured data from the real structure is used to 

update the structural matrices (mass, stiffness, and damping) such that the updated model can 

accurately represent the real structure. Based on the updated model, damage detection, localization 

and quantification can be conducted through further model-updating using measured data from the 

structure under test. This method has attracted a great deal of effort in research and demonstrated 

effective for damage identification. Teughels and De Roeck (27) used an iterative sensitivity-based 

FE model updating method for damage detection, where the natural frequency and mode shape 

discrepancies obtained from ambient testing were minimized. They used damage functions to 

estimate the stiffness distribution and a trust region strategy to implement the Gauss-Newton 

method. The FE model updating was validated via data from a real prestressed concrete bridge. It 

was found that the bridge damage can be identified through updating the Young’s and shear 

modulus. Moaveni et al. (28) tested the progressive failure of a full-scale reinforced concrete shear 

wall building on a shaking table. They used a sensitivity-based FE modeling updating method to 

detect the damage of the building during experiment. Significant uncertainties were observed in 

the damage identification results. To quantify the uncertainty, they used meta-modeling and 

analyzed the variance of five selected parameters. The authors found that the level of confidence 

of damage identification results depend on the uncertainty of modal parameters and the design of 

experiments. Although model-based methods are widely used for damage identification, they are 

challenged by the fact that the inverse problem solving is always computationally intensive and 

often ill-posed. Hence, this method requires careful regularization (29, 30). In addition, this 

method is susceptible to the uncertainty of the measurements, the structures, and environmental 

variations such as temperature change.  

In comparison, data-based approaches which are statistical in nature implements damage diagnosis 

through pattern recognition. Machine learning methods appear as a promising approach for pattern 

recognition and regression (26, 31-32). For instance, support vector machines (SVM) and artificial 

neural networks (ANN) exhibit good performance to detect structural damage. Zhang and Sun (33) 

proposed a data-driven method for multi-site structural damage identification using constrained 
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Independent Component Analysis (cICA). In (33), the authors compacted the structural damage 

information contained in the response into the mixing matrix by enforcing identical independent 

components to that of intact structures. By doing this, the cICA can significantly reduce the feature 

dimension and preserve all the valuable information of damage. Through a case study, they found 

that the mixing matrix elements can well identify multi-site damage, and the proposed method can 

progressively locate the structural damage. In Ref. (34), a machine learning method of multi-label 

classification was used to detect multi-site structural damage. The authors used multi-label 

classification method to consider the physical correlation between damage cases. Research results 

show that the multi-label classification method is better than the traditional multiclass 

classification and binary classification methods for multi-site damage identification. In (35), Zhang 

et al. proposed a data-driven method using support vector machines to evaluate bridge scour 

severity. Using a sensitivity analysis, features from bridge dynamic responses were obtained and 

scour damage-sensitive features were selected. It was found that the proposed data-driven method 

can quantify the bridge scour evolution. In addition, Zhang et al. (36-37) developed data-driven 

machine learning methods to evaluate the road roughness using vibration data collected from 

connected vehicles. A numerical quarter-car model was established to provide required response 

data of vehicles. Through sensitivity analysis, critical features that were sensitive to road roughness 

levels were selected and used as input of an artificial neural network (ANN) model. Research 

results indicated that the proposed method can accurately evaluate the road roughness. While data-

driven methods for damage identification have many advantages, the primary challenge is the lack 

of critical data or data insufficiency corresponding to realistic damage scenarios of critical 

structures, e.g., tall buildings and long-span bridges. To address this limitation, physics models 

and knowledge can be incorporated into data-driven methods to improve the performance and 

reduce the huge amounts of data needed for pure data-driven methods. Recently, physics -

informed, -guided, or -constrained methods (These terms are similar) have been under 

development to combine the merits of data-based and physics-based methods in a wide range of 

areas, e.g., computational fluid mechanics, wind engineering, and structural health monitoring. 

Zhang and Sun (38) proposed a physics-guided machine learning method that integrates pattern 

recognition with FE model updating for damage identification. A physics guided neural network 

(PGNN) was used and a physics-based loss function was developed to quantify the discrepancy 

between the results from NN model and FE model updating. The authors found that the trained 

NN model can improve the damage identification results. Modeling uncertainty/modeling error is 

recognized as a primary challenge for accurate structural identification and damage detection using 

model updating. To overcome the negative effects caused by modeling uncertainty, Zhang et al. 

(39) proposed a transfer-learning guided Bayesian modeling updating method for damage 

detection. Pattern recognition was adopted to guide Bayesian model updating and supervise the 

identification of structural damage. They used domain adaptation to realize transfer learning to 

bridge the discrepancy between the physical structure and biased numerical models. Research 

results showed that if modeling errors exist, the transfer learning guided Bayesian modeling 

updating method outperforms the traditional methods in identifying damage severity.             

In recent years, efficient deep learning models were developed and trained to identify images. 

Recently, due to the rapid development of computer vision techniques and low-cost high quality 

imaging devices, computer vision based SHM (CV-SHM) is attracting increasing research efforts 

in the SHM community. In comparison with traditional SHM methods that needs installation of 

sensors and cable wiring, CV-SHM has the advantage to implement monitoring of target structure 

over long distance and in a non-contact manner. Portable imaging devices carried by drones, 
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robotics, or vehicles can conduct fast scanning of target structures. Therefore, the cost and labor 

required in monitoring can be reduced significantly using CV-SHM. Detailed reviews on CV-

SHM can be found in Refs. (40-43).  

As unmanned aerial vehicles (UAVs) become more and more popular, researchers started to resort 

to mages and videos from places which are hard to reach. Especially for bridges, UAVs can quickly 

fly to the desired locations to take images and videos. Hence, it is promising to integrate the deep 

learning method with UAV images to develop an automatic crack damage identification method. 

The DIC techniques compare changes of digital images at different deformation stages to measure 

deformation and strain and to detect cracks. However, DIC requires precise camera alignment and 

reference points of a target surface, which is suitable for lab testing and might not be practical for 

real life structures. In comparison with to DIC, vision-based crack identification method is more 

practical and widely accepted due to its advantages of simplicity, noncontact, cost effectiveness, 

and intuitive interpretation of data (5-6). In recent years, computer vision-based technique is 

emerging as an effective tool for structural damage identification of a wide range of civil, 

mechanical and aerospace structures. Although computer vision and image processing techniques 

have been proposed for crack identification, complicated background information from a real 

bridge structure is always involved in the images, such as handwriting scripts during human 

inspection, electrical wires of sensors for health monitoring, and desultory edges of welding joints. 

All these image background noises will result in errors in the identification of cracks. Therefore, 

advanced algorithms are required for crack identification based on images with complicated 

information. 

Application of vision-based inspection and monitoring includes deflection measurement (7-9), 

detection of concrete spalling (10-11) and steel corrosion (12). Choi et al. (7) proposed a dynamic 

displacement vision system to measure response of unapproachable structures using a hand-held 

video camcorder. They verified the algorithm of the proposed method using static and dynamic 

testing. It was found that the proposed method can be used to precisely record dynamic 

displacement of structures during earthquakes. To measure structural response in an arbitrary 

direction, Park et al. (8) developed a motion capture system to measure three dimensional 

structural displacements. The authors used multiple cameras to measure 2D coordinates of the 

target and then calculated the 3D coordinates. The proposed method was validated using a reduced 

3-story structure and laser displacement sensors. Feng and Feng (9) used a single camera to 

measure the structural displacements at multiple locations. They used the upsampled cross 

correlation and the orientation code matching template matching techniques. The authors 

conducted a shaking table test of a 3-story structure model and observed that the single camera can 

provide accurate displacement when compared with laser displacement sensors. It was also found 

that the vision sensor can overcome adverse environmental conditions, such as dim light, 

background disturbance template occlusion.  

Existing methods to detect cracks from images include the image binarization method (13), the 

stereo-vision method (14) and sequential image processing (15). Kim et al. (13) proposed an image 

binarization-based method to detect cracks on concrete structures. They optimized the associated 

parameters of five image binarization methods. Research results indicated that the optimized 

binarization method can accurately measure the crack width and length. Lecompte et al. (14) used 

two different camera techniques to detect the cracks on the surface of a concrete beam under 

flexural loading conditions. The authors used the two techniques to measure the displacements at 

different points on the structural surface and calculated the deformations using the Green-Lagrange 
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strain formula. Research results showed that the proposed two techniques can be used to detect the 

onset and development of cracks on concrete beam surface. Yamaguchi et al. (15) introduced a 

image-based method for crack detection on concrete surfaces. They proposed an image-based 

percolation model to extract the continuous texture. Noise reduction was also proposed using the 

percolation model. The model was validated using precision recall and receiver operating 

characteristic (ROC).  Basically, image-based methods for crack detection fall into two categories: 

patch-based methods and pixel-based methods. In the patched based methods, a sliding window 

(the patch) is always used to run across the image to search for the potential cracked sub-region of 

the original image. In this method, machine learning and deep learning can be used to recognize 

cracks via cluster analysis (unsupervised learning) or classification (supervised learning). Abdel 

et al. (44) proposed a PCA-based (Principal Component Analysis) method to detect cracks using 

cluster analysis. To enhance the PCA method, the authors also used raw data features and local 

region features. They found that PCA with local region features provide the best detection 

accuracy. Prasanna et al. (17) developed an automatic crack detection algorithm STRUM (spatially 

tuned robust multifeature) classifier to detect cracks in image patches of concrete structures. The 

STRUM classifier can be selected as SVM (Support Vector Machines), AdaBoost, and Random 

Forest. It was found that the proposed STRUM can accurately detect cracks of concrete structures 

and the Random Forest classifier provides the best accuracy.  

In pixel-based methods, the original image is directly processed, and the detailed crack 

morphology is output at pixel level. Edge detection techniques are always used to detect cracks at 

pixel level. Abdel et al. (16) evaluated the performance of four methods for crack detection of 

bridges: fast Haar transform (FHT), fast Fourier transform, Sobel and Canny. The authors found 

that the FHT is the most effective technique in identifying bridge cracks. Li et al. (45) proposed 

an integrated image processing method for extracting and segmenting cracks. The authors 

evaluated the method using collected images from bridges and found that the developed algorithm 

can accurately and efficiently detect bridge cracks. Yu et al. (46) adopted a Sobel detector to detect 

edges based on which the cracks can be identified. They found that the geometry and patterns of 

cracks on concrete structures can be accurately detected using the proposed system. Recently, Kim 

et. al proposed a method to identify concrete cracks using a combination of RGB-D and high-

resolution digital cameras (47). Research results showed that the proposed method can well 

measure crack width regardless of the angle of view.  

To detect cracks in inaccessible areas, robotics and unmanned aerial vehicles (UAVs) were used. 

Xu et al. (48) proposed a robot system to inspect stay cables of cable-stayed bridges. Through 

laboratory and field testing, it was found that the robot can climb the inclined cables smoothly and 

stably. Ho et al. (18) used cameras mounted on cable climbing robotics, image processing and 

pattern recognition techniques to detect damage of bridge cables. It was found that the proposed 

method could be used to detect damage of bridge cables. Zhong et al. (19) used a UAV camera to 

detect cracks on concrete surfaces. An 8-rotor UAV was used to collect image data and a non-

contact measurement instrument was used to capture the motion characteristics of the UAV in a 

hovering state without considering wind. The authors determined the minimum safety distance 

between the UAV and target building. However, the safe working distance in wind conditions and 

the allowable wind speed in normal operations were not included. Ellenberg et al. (20) used UVA 

camera images to quantify bridge related damaging including deflection, corrosion, and cracks. 

The results indicated that the developed post‐processing algorithms were able to extract 

quantitative information from UAV captured imagery. To improve computer-vision crack 
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detection drawbacks caused by motion blur or lack of pixel resolution, Bae et al. (49) developed a 

super-resolution crack network. The authors found that the proposed super-resolution crack 

network outperforms (24% better than) the method using raw images.    

Although the combination of UAV cameras and vision-based technique can provide damage 

information via graphing of inaccessible areas and extensive structures, it is still limited and time 

consuming to process thousands of target images to extract accurate damage information. Images 

directly taken using UAV cameras need to be de-noised, standardized and reconstructed for 

extraction of damage information. To improve image processing efficiency, machine learning 

techniques have been used and shown effective. In recent years, as an emerging technique, deep 

learning, which refers to artificial neural networks with many hidden layers for enhanced 

performance, is spotlighted and shown promising for efficient image processing and damage 

identification.  

Zhao et al. (21) developed a traffic surveillance system using deep learning and speeded-up robust 

features (SURF) to track vehicles and their movements. They used an aerial camera array mounted 

on an airplane to collect traffic data with a sampling frequency of 1 Hz and a coverage of 25 square 

miles. Machine learning methods were used to collect traffic data including the speed, density, and 

volume. It was found that deep learning with speeded up features can accurately (92%) estimate 

the speed, density, and volume. Pavement cracking detection is important for secure transportation, 

yet it is challenging because of the inhomogeneity of cracks and the complexity of the background. 

To address this issue, Zhang et al. (22) used convolutional neural network (CNN) deep learning 

method for road crack detection. Using smart phones, the authors collected 500 images with a size 

of 3264 by 2448 pixels. The research results indicated that the trained CNN model offered better 

crack detection results than methods using features extracted based on hand-craft methods. To 

overcome the challenges from real-engineering structures, e.g., lightening and shadow changes, 

Cha et al. (23) developed a CNN-based method for concrete crack detection. It was found that the 

proposed CNN using Canny and Sobel edge detection methods can find concrete cracks in real 

structures. Tong et al. (24) proposed a CNN-based method for crack length measurement. The 

authors used k-means clustering analysis to calculate the pre-extract cracks’ properties which were 

used for training and testing. It was found that the accurate crack length recognition can be 

achieved. Till now, most existing literature on crack identification using vision- and machine 

learning-based techniques have been validated via laboratory testing. However, the images (intact 

and cracked) used in most existing literature don’t include various challenging conditions that 

widely exist in real-life structures (e.g., human-made markings). In addition, there will be image 

distortion, lightening, edges, and shadow issues when using an UAV camera. Also, most computer 

vision-based methods focus on crack detection while references on crack quantification are 

limited. All these deficiencies in existing methodologies need to be addressed. In other words, 

there is a lack of a framework that can implement UAV image sensing and automatic image 

processing for accurate damage identification of both laboratory and real-engineering structures.    
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3.2. Research Motivation 

As presented in the literature review, extensive research efforts have been exerted on developing 

computer vision- and deep learning-based methods to detect crack damage. However, the images 

(intact and cracked) used in most existing literature don’t include various challenging conditions 

that widely exist in real-life structures (e.g., human-made or road boundary markings). In addition, 

different references used different CNN model architecture, e.g., VGG-16 (50), AlexNet (51), or 

GoogLeNet (52), and a comparative study with respect to these architectures is lacked. Also, most 

computer vision-based methods focus on crack detection while references on crack quantification 

are limited. All these deficiencies in existing methodologies need to be addressed. In other words, 

there is a lack of a framework that can implement UAV image sensing and automatic image 

processing for accurate damage identification of both laboratory and real-engineering structures.    

Therefore, it is desirable to develop a comprehensive computer vision- deep learning-based 

methodology with the required large datasets to perform bridge crack identification (detection and 

quantification). Furthermore, this developed methodology can provide cracking identification 

outputs that are compatible with current American Associate of State Highway and Transportation 

Officials (AASHTO) bridge inspection standard.  
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4. METHODOLOGY 

Figure 1 illustrates the proposed procedure for crack damage detection. As shown in Figure 1, in 

the first step, a large volume of images with and without cracks will be collected from the Internet 

and using a UAV. Then these images will be corrected, segmented, and reconstructed to extract 

features that are closely related to cracks. For example, an image whose original resolution is 2048 

x 2048 will be divided into 64 sub-images whose resolution is 256 x 256 using a sliding window. 

The objective of reconstructing the data structure is to facilitate the location of the crack region as 

well as to correlate the pixel values with the crack features.  The generated image data will form a 

data library which will be divided into three datasets: one for training, one for testing, and one for 

validation. Next, a CNN classifier will be trained and validated. Finally, a new cracked image from 

a local bridge which is not included in the data library will be processed and identified by the 

trained CNN classifier to test the learned CNN model. Specific research activities to achieve the 

research goal are described in the following subsections.  

 

Figure 1. Procedure of CNN deep learning-based crack detection and quantification 

4.1. Development of a Prototype Programmable Drone    

4.1.1 Market evaluation    

Drones are defined as an aircraft without human pilot on board. The flight of drones may operate 

under remote control by a human operator or fully autonomous. According to the rule of Federal 

Aviation Administration (FAA), a small drone that is less than 55 pounds can fly for work or 

business by following the Part 107 guidelines. Drone pilots operating under Part 107 may fly at 

night, over people, and moving vehicles without a waiver if they meet the requirements defined in 

the rules. Drones have been extensively studied in controls literature as well as common press. 

They are being used in mining, construction, aerial photography, search and rescue, movie 

industry, package delivery, mapping, surveying, farming, animal research, hurricane hunting, and 

defense.  

Existing drones on the market can be classified into two categories: recreational drones and 

educational drones. We did a survey of existing drones in the market, and the pictures of drones 

are shown below.  
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Table 1. Illustration of current drones in the market 

  

(a) DJI Inspire 1 (b) DJI Matrices 100 

  
(c) Voyager 3 (d) DJI Phanton 3 Pro 

  
(e) DJI Phanton 4 (f) Yuneec Typhoon H 

  

(g) DJI S900 airframe (h) Yuneec Typhoon 4k 

  
(i) Blade Chroma (j) Autel Robotics X-Star Premium 
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There are two reasons why we do not adopt the existing drone from the market. The first reason is 

due to the budget. Prices range from $1000-$3000. It is well beyond the budget we have in this 

project. The second reason is that the drones in the market are not fully controllable. The source 

code is not open, and we are not allowed to do some modification to suit our purposes for 

applications. 

4.1.2. Overall Design 

 

Figure 2. Key technology used in the developed drone 

The overall design includes the communication between the drone and ground station (computer), 

and path planning using the GPS information to design waypoints. The drone first flies to the home 

point and wait for a command to start. Then the drone will take off from the starting point. Then a 

trajectory with several waypoints is transmitted from the ground station to the drone. The 

waypoints are GPS information. Then the drone will visit each way points. At the same time, 

pictures and videos will be recorded. After completing the visit of all way points, the drone will 

fly back to the home station. The pictures and videos will be stored the memory card in the drone. 

The components are explained below: 

• Ground Station: It is the home base. The ground station will update the expected flight points, 

and communicate with the drone, such as sending take-off and return commands.  
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• Drone: It is the one performs the inspection task and receive information from the ground 

station. Cameras will be mounted on the drone to take pictures and videos. The autopilot of the 

drone control will be discussed below. Due to the budget limitations, we are not able to perform 

real time crack detection. It can be conducted if additional fundings are available.  

• Remote control: It is another way to control the drone. The drone will fly autonomously. The 

remote control is used to ensure safety. In case, the communication between the ground station 

and the drone is lost, or some anomaly happens on the drone. The remote control can take over 

and control the drome fly back to the home station.  

4.1.3. Drone Autopilot 

The quadrotors use four motors acting as direct power sources for flight and are controlled by 

varying the lift generated by the four rotors. What we can control in the quadrotors are angular 

speeds of four rotors. Each rotor has an angular speed and produces a vertical force and a moment 

to control the position and attitude of quadrotors. Figure 3 shows the controlling principle.  

 

Figure 3. Controlling principle of the drone    

4.1.4. Prototype Quadrotor Drone  

Figure 4 illustrates the developed prototype of the programmable drone. The key parameter values 

of the drone are listed in Table 2. Before flying the drone, we need to set the airframe, calibrate 

compass, gyroscope, and the accelerometer. Figure 5 demonstrates the compass calibration 

process. During this calibration, the drone is placed in any of the orientations shown in red 

(incomplete) and held still. Once prompted (the orientation-image turns yellow) rotate the drone 

around the specified axis in both directions. Once the calibration is complete for the current 

orientation, the associated image in the corresponding box will turn green. Repeat the calibration 

process for all orientations. Upon completion of calibrations, the drone is ready to set off.    

 

Figure 4. Developed prototype of the programmable drone  
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The research team has tested the performance of the developed drone prototype. It can successfully 

take off and fly along the pre-defined trajectory. Preliminary datasets were gathered using a cell 

phone camera installed on the drone. Relevant videos can be found via the uploaded YouTube 

video: https://youtu.be/g_sLGD6dG-Q (positioning model) and https://youtu.be/HEmbD50Kw7I 

(takeoff mode).  

It is noted that this part is an initial exploration of a programmable drone that will be fully used in 

future research projects and application. In this project, most datasets were gathered using a 

commercial drone DJ phantom 4, which is described in the following section.  

Table 2. Developed prototype drone system performance parameter values 

Parameter  Value Parameter  Value 

Takeoff Weight 1100 g Max flight speed 5 m/s 

Dimensions 500×500×225 mm3 Max tilt angle 35° 

Max ascent speed 3 m/s Max service height 1000 m 

Max descent speed 3 m/s Control Range 3400 m 

Max descent speed 12 minutes Maximum storage 32GB 

 

 

Figure 5. Calibration of the drone  

4.2. Data Collection and Processing 

4.2.1. Image and video data collection 

As mentioned in preceding sections, a large number of datasets covering comprehensive cracking 

types are essential to achieve desired detection and quantification results using deep learning 

methods. In this project, the required datasets were mainly collected using a DJ Phantom 4 drone 

hovering around target bridges, concrete road surface, and asphalt pavements. In addition, images 

taken during inspection of bridges (Fig. 6 (b) and (c)) using hand-carrying cameras were included 

https://youtu.be/g_sLGD6dG-Q
https://youtu.be/HEmbD50Kw7I
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in the datasets. Figure 6 shows the three bridges in Louisiana that were used to take images and 

videos. Figure 6(a) is a I-10 highway bridge across the City Park Lake. It is a steel girder bridge 

with concrete bent and columns. Figure 6 (b) is a prestressed concrete continuous bridge 

overpassing a railroad. The main span length is 85 ft. Fig. 6 (c) has a steel main span and the 

approach span is prestressed concrete continuous bridge. In addition, images and videos of asphalt 

pavements were collected using the drone hovering over the Touchdown village parking lot in 

LSU. Through data collection, around 300 raw concrete images (with and without cracks) and 100 

raw asphalt images (with and without cracks) were gathered. These images cover representative 

cracking types, e.g., single crack, multiple cracks, thin or wide cracks, and cracks with human-

markers, background noises, or road boundary markers. Figure 6 demonstrates a group of cracked 

images with representative cracking types.        

 

Figure 6. Local bridges used to collect data using drones.  

4.2.2. Calibration and homography 

Raw images directly taken from the camera are always distorted due to the wide angles of the 

camera lens. Therefore, distortion calibration will be implemented in the first step to get precise 

crack assessment. In this research task, the camera calibration algorithm developed by Zhang et 

al. (53) will be used. The basic idea is described here. Let 𝑚 = [𝑢, 𝑣]𝑇 denote a 2D point and 

𝑀 = [𝑋, 𝑌, 𝑍]𝑇  denote a 3D point. Then define 𝑚̃ = [𝑢, 𝑣, 1]𝑇 and 𝑀̃ = [𝑋, 𝑌, 𝑍, 1]𝑇 . The 

relationship between a 3D point 𝑀 and its 2D projection is: 

𝑠𝑚̃ = 𝐴[𝑅, 𝑡]𝑀̃, 𝐴 =

𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1
                                               [1] 

where:  

s = an arbitrary scale factor;  

𝐴 = the camera intrinsic matrix;  

[𝑅, 𝑡] = the rotation and translation parameters that relate the world coordinate system to the 

camera coordinate system;  

𝛼, 𝛽, 𝛾 are the scale and skew factors; and 

𝑢0, 𝑣0  are the coordinates of the principal point.  

Without loss of generality, the model plane is assumed to be on 𝑍 = 0 of the world coordinate 

system. Equation 1 can be written as: 
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𝑠 {
𝑢
𝑣
1

} = 𝐴[𝑟1, 𝑟2, 𝑟3, 𝑡] [

𝑋
𝑌
0
1

] = 𝐻 [
𝑋
𝑌
1

], with 𝐻 =  𝐴[𝑟1, 𝑟2, 𝑡]              [2] 

where: 

 𝐻3×3 is the homography to be determined.  

For each image, we can have a linear transformation as shown in Equation 2. With the coordinates 

of 𝑛 (𝑛 ≥ 3) images. The homography can be determined via solving the least squares problem. 

Then the calibration and homography is completed for the selected camera. 

 

Figure 7. Illustration of collected images with representative cracks and background noises  

4.2.3. Crack feature extraction 

The collected raw images are RGB (red, green and blue) images in JPG/PNG format, including 

color information, which increases the difficulty of feature detection and recognition of crack 

characteristics. To facilitate crack feature extraction, the color information will be changed and 

images will be converted to grey-scale binary figures in BMP format. Figure 8 shows the procedure 

converting the RGB crack images to gray-scale binary images. In Figure 8, the original image is 

not segmented. In this research, the raw image will be segmented into a number of unit sub-figures 

for the deep learning process. It is noted that the shadows in Figure 8(b) produces fake cracks in 

the binary image. This issue will be addressed in this research task by finely adjusting the 

parameters during image conversion.   
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(a) 

 

(b) 

Figure 8. Illustration of crack feature extraction 

4.3. Deep Learning-based Crack Damage Identification  

Based on the collected datasets, this section uses deep learning models to identify crack images. 

As mentioned in the literature review, there are two basic methods to detect cracks using images: 

patch-based and pixel-based. In this project, the patch-based crack detection method is used.  

4.3.1. Data preparation: Patch-based crack detection   

Patch-based crack detection techniques involve separating the image into sub-images, predicting 

the presence of cracks on each sub-image and then drawing inference about the crack damage on 

the full picture. Sub-images were obtained from the images by sliding a window across the images, 

as shown in Figure 9. In this project, the used slide windows have a dimension of 256 to 380 pixel. 

The size of the sliding window used is based on the resolution of the images and the distance of 

the camera from the bridge surface. By using the 256-to-380-pixel window for image pre-

processing, care is taken to exclude the images with scratches and surface irregularities, so they 

won’t be identified as cracks by the model. The resulting sub-images were then resized to 256 by 

256 pixels to build a database for training and validation. 

 

 Figure 9. Sliding window for data preparation 
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4.3.2. Data benchmarking, filtering, and augmentation 

• Data benchmarking and filtering  

The data obtained was screened and filtered. Images that are not clearly cracked, or free from 

cracks as visually observed by a human, are discarded. As shown in Fig. 10, the filtered images 

include those with low resolution as a result of poor camera focus when the drone is in motion, 

images where the surface cracks are visible, and images containing background features and 

images with ambiguous crack marks. A benchmark for pre-classifying each of the image into a 

class is then determined for consistency. To build a database for the different classes of the data, 

the sub-images were scanned for cracks. If there was a conspicuous crack, either narrow, moderate, 

or severe, the images are classified as ‘cracked’. If there were no cracks at all, it was classified as 

‘non-cracked’. 

 

Figure 10. Data benchmarking and filtering with respect to asphalt pavement images 

• Data augmentation 

This data pre-processing procedure involves augmenting the existing dataset with perturbed 

versions of the existing images. Via flipping and rotating the original image dataset in the ‘cracked’ 

classes for both concrete and asphalt images, we can obtain around 10,000 sub-images while the 

non-cracked concrete and asphalt dataset contains around 20,000 sub-images each. It is noted that 

application of data augmentation helps to expose the neural network to a wide variety of variations 

and make it less likely that the neural network recognizes unwanted characteristics in the dataset. 
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5. ANALYSIS AND FINDINGS 

5.1. Results of Hyper-Parameter Optimization 

Performance of deep learning models are highly sensitive to its parameters. Hence, optimization 

of the hyper-parameters for a learning algorithm is of critical importance. A hyper-parameter is a 

parameter whose value is used to control the learning process. For different datasets, the hyper-

parameter needs to be tuned so that the model can optimally learn and properly generalize on the 

dataset. The optimization of hyper-parameter yields an optimal model which minimizes the loss 

function on the given data. For the hyper-parameter search, as shown in Table 3, there are different 

approaches to hyper-parameter optimization. The first is the grid search which selects all the 

possible combinations of the hyper-parameter configurations in the entire search space. The 

searching trains the network using each configuration and returns the optimal configuration where 

the loss is minimal. This approach requires a high computational cost. 

In comparison, other approaches can mitigate the computational cost by bypassing the exhaustive 

search space. For instance, the random search approach randomly selects a combination of hyper-

parameters from a discrete or continuous set of values and returns the performance after training. 

However, there is no guarantee of finding the optimum point. There are many other options to tune 

hyper-parameters including the Bayesian optimization approach and the reinforcement learning 

approach (54,55). The early stopping-based search focuses on the promising hyperparameters and, 

based on some statistical tests, disregards the ones that perform poorly. In this project, the 

asynchronous successive halving (ASHA) method is used.  

Table 3. Approaches for hyper-parameter optimization 

Hyper-parameter optimization 

methods 

Description 

Random search 
Random parameter search and training using all the 

possible parameters in the set 

Bayesian optimization 

Probabilistic model determination to map 

hyperparameters to the objective function and locate the 

optimum (56, 57) 

Grid search 
Exhaustive parameter search and training using all the 

possible hyperparameters in a discrete set 

Gradient-based optimization 

Gradient computation, with respect to hyperparameters 

and subsequent hyperparameters optimization using 

gradient descent 

Evolutionary optimization 
Evolutionary algorithm-based optimization to search the 

space of hyperparameters 

Early stopping-based search 

Considers the promising hyper-parameters, and 

disregards the ones that perform poorly based on 

statistical tests, successive halving (SHA) Asynchronous 

successive halving (ASHA) (58) 

Population-based optimization 

Starts training many neural networks in parallel with 

random hyperparameters and uses information from the 

population to refine the hyper-parameters (59) 
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Table 4 lists the deep learning model architecture parameters tested using the dataset, and the 

hyper-parameter search space used in this project. The optimizers considered include the stochastic 

gradient descent optimizer, SGD, which implements the stochastic gradient descent algorithm, 

optionally with momentum. The parameters for the optimizer are momentum factor (mm), weight 

decay (wd), learning rate (lr), and the dampening (dp). The learning rate determines how much the 

model weights are changed in response to the estimated error each time the model weights are 

updated. The momentum factor helps accelerate gradients in the right directions, leading to faster 

convergence. Dampening helps to reduce the step size for higher gradients. The weight decay helps 

in regularization by adding a small penalty, to the loss function, to keep the weights small, and 

prevent over fitting. 

Table 4. Search space for hyperparameters 

Model parameter and hyper-parameter search space 

Model ResNet, GoogLeNet, AlexNet 

Hyper-parameters 

learning rate (lr) 

weight decay (wd) 

eps 

rho 

betas 

batch size 

momentum (mm) 

Dampening (dp) 

log uniformly between [1e-4 1e-1] 

{8e-6,1e-5,3e-5} 

1e-8 

0.9 

0.9, 0.999 

{32,48, 96, 128} 

{0.6,0.9,1.2} 

{0,0.9,0.995} 

Model parameters 

Optimizer 

 

Activation function 

Adam(lr, betas, eps), Adadelta(lr, rho, eps) SGD(lr, mm, wd, dp) 

 

Rectified Linear Unit (ReLU), leaky ReLU, tanh, Scaled 

exponential Linear Unit (SELU) & identity 

 

The Adam optimizer implements the Adam algorithm (60, 61). In addition to learning rate and 

weight decay, the Adam optimizer parameters include betas, coefficients used for computing 

running averages of gradient and its square, and epsilon, a term added to the denominator to 

improve numerical stability (eps). The Adadelta optimizer implements Adadelta algorithm (62). 

In addition to the learning rate, epsilon and weight decay, parameter rho is used for computing a 

running average of squared gradients. 

In this project, the Inception Net, the ResNet, and the AlexNet models are the main deep learning 

architectures applied to the dataset. Each of these network models are made configurable by either 
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editing the pytorch-based source code or a similar code snippet, and representing it using the 

pytorch lightning module, whose advantage over pytorch is that it provides a structure for the 

research. These architectures were chosen because they have unique configurations and performed 

well on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC15) (63). The 

Asynchronous Successive Halving Algorithm (ASHA) is used. The hyper-parameter tuning was 

carried out using pytorch, ray tune, and pytorch lightning modules in Python. Figures 11-13 

demonstrate samples of the Python codes developed in this research. 

 

Figure 11. Code snippet showing modules imported for the optimization 

 

Figure 12. Code snippet showing training function 

 

Figure 13. Code snippet showing data loader transformation 
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Table 5. Results of hyper-parameter search 

 

Figure 11 shows the libraries that are imported to implement the hyper-parameters search. 

Pytorchlighning, which is a module that runs on pytorch is imported and used for model and dataset 

handling while Ray tune is imported for ASHA hyper-parameter tuning. TuneReportCallback is 

imported to pass the metrics, including the training accuracy and validation accuracy from the 

pytorch lightning-based training to ray tune. TensorBoardlogger is used for logging the experiment 

 

Model parameter and hyper-parameter search space 

 

Model 

 

Residual network architecture 

 

Inception network 

architecture 

 

Alex net 

Model parameters 

 

Network size/depth 

Batch size  

Activation function 

 

256 × 2 + 512 × 3 ResNet blocks 

64 

Relu 

 

4 inception blocks 

4 

leaky relu 

 

64 

relu 

Tuned hyper-parameters 

 

Optimizer 

learning rate  

dampening  

betas  

momentum  

eps 

rho 

weight decay 

 

Ada Delta 

0.0152923 

N/A  

N/A  

N/A 

2.33231e-08 

0.9 

N/A 

 

Adam 

0.000216735 

0 

[0.9, 0.999] 

N/A  

1.7739e-07 

N/A  

N/A 

 

Ada Delta 

0.0163072 

N/A  

N/A  

N/A 

2.04677e-

06 

0.9 

N/A 

Performance metrics 

Validation Accuracy 

Validation loss  

at epoch 

99.83% 

0.00652511 

35 

96.38 % 

0.0978632 

35 

99.0302 % 

0.0378648 

35 
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progress. As shown in the code snippet in Figure 12, each training process receives a set of hyper-

parameter configuration ‘config’ which is then passed into the corresponding deep-learning model 

modules to create a model and train it with this configuration. 

Also, the dataset is handled using the pytorch lightning module. The dataset is made configurable 

to handle different batch sizes, since the batch size is a parameter in the search-space. Random 

color jitters are applied to the images in the dataset at every epoch, to improve generalization, as 

shown in the code snippet in Figure 13. The results are outlined in Table 5.  

 

Figure 14. Final residual network structure: dashed lines indicate the change in dimension of input volume 

5.2. Results and Performance of the Optimized Deep Learning Models 

Via optimization, the optimum ResNet architecture for the dataset is a five-layer network where 

the first two layers have a size of 256, and the last three of 512. The optimum model with the 

Inception Network architecture has three layers with a maximum pooling layer. The Alex Network 

still retains its architecture, and a set of optimum parameters are obtained. The ultimate architecture 

of the ResNet and the Inception Network are illustrated in Figures 14 and 15, respectively.  

To evaluate the performance of the ResNet, AlexNet, and Inception Net models, the validation 

accuracy of the three optimized models are compared in Figure 16. As observed in Figure 8, the 

ResNet architecture outperforms the other two models in validation accuracy. The validation 

accuracy of the ResNet model is generally higher than those of the AlexNet and Inception network 

at every training epoch, except for some slight dips at some epochs. These dips are related to the 

ResNet model architecture’s generalization errors that may occur after some training iteration but 

tend to become smaller as the training progresses. It gives a picture of the model’s approach to the 

optimum.  

Another metric compared is the total number of weighting parameters in the three models. The 

number of parameters is crucial because it gives an indication of the memory space required to 

make an inference with the model. The model’s weight would be stored and used for computation 

and inferences in newer images. More importantly, the number of weight parameters gives a good 

indication of the computational costs of the model in making inferences. The prediction algorithm 

divides each new image into several sub-images. A higher number of weights means a higher 

number of computations for each given image, and a higher computational cost for making 

inferences for several sub-images in series. The Inception Network has the smallest size of 

weighting parameters. The residual network has about 260 times more parameters, while the 

AlexNet has about 800 times more parameters than the Inception Net. A higher validation accuracy 

will yield a higher generalization, while lower number of parameters will conserve more memory, 

and computational power. For the project’s optimal crack prediction, the ResNet architecture is 

chosen.  
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With the optimized ResNet model, the testing dataset was input into the model for identification. 

In the first trial, the concrete and asphalt images were mixed in a single dataset for training and 

validation. Results indicated that the identification accuracy is not high (< 0.7) because the 

concrete and asphalt images have different features. A mixed dataset will lower the parameter 

optimization efficiency and accuracy. Hence, two separate datasets: one for concrete and another 

for asphalt were created to train two separate ResNet learning models, one for concrete and the 

other for asphalt. The identification results are shown in Figure 18 where representative types of 

cracks, e.g., thin, medium, and large cracks are covered. In Figure 18, we can find that the 

optimized ResNet model can well identify different types of cracks in the concrete and asphalt 

images. Figure 19 illustrates an asphalt pavement image with cracks and yellow boundary markers. 

We can find that through labeling the cracks and markers in the training dataset, the real cracks 

can be correctly detected without false identification of the yellow markers as cracks.     

 
Figure 15. Final inception network structure 
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Figure 16. Comparison of ResNet, Inception Net, and AlexNet models 

 

Figure 17. Comparison of number of weighting parameters in the Inception, ResNet, and AlexNet models 
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Figure 18. Crack identification using the optimized ResNet model. (a): concrete images with representative types of 

cracks; (b) asphalt images with representative types of cracks 

 

Figure 19. Detection of asphalt pavement crack without identifying boundary markers as false cracks  
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6. CONCLUSIONS 

This research project develops an automatic crack identification methodology using deep learning 

techniques and UAV images. The research goal is to offer an efficient, cost-effective inspection 

method for aging bridges and other transportation infrastructure. The research work has been 

focused on dataset collection, image processing, and optimization of deep learning models. Both 

local bridges and asphalt pavements were used to collect large amounts of images and videos. 

Python-based codes have been developed to implement training, testing, and validation of the deep 

learning models. Based on the field data and numerical modelling results, the following major 

conclusions can be drawn: 

1) The developed prototype of a programmable drone can be well controlled using the PX4 

autopilot platform. Through testing, the developed drone can take off and land autonomously. It 

can follow predesigned trajectories by inputting the GPS location information. This programmable 

drone can carry other cameras, e.g., multispectral cameras, LiDARs, and other advanced sensing 

tools to implement inspection of bridges and other transportation infrastructure   

2) A large volume of images and videos (with and without cracks) has been collected from local 

bridges, buildings, and asphalt pavements using drones. The obtained dataset covers images from 

different bridge components (decks, girders, and piers) with four representative cracking 

severities: intact, minor cracking, moderate cracking, and severe cracking. It is noted that images 

with background noises, such as road boundary markers were included in the dataset for 

identification. The collected comprehensive dataset of images and videos can be used to train 

machine learning models to identify cracking damage of a large set of concrete bridges and 

pavements. 

3) A deep convolutional neural network-based computer vision methodology for efficiently 

identifying cracks in bridges and pavements has been developed. Three CNN model architectures, 

ResNet, Inception Net, and AlexNet were selected, and the corresponding parameters were 

optimized. Python based codes were developed for training, testing, and validation of the CNN 

models to efficiently identify cracks. Through comparison, it is found that the ResNet provides the 

best identification accuracy and requires an acceptable computational cost. Hence, the ResNet was 

selected for crack identification in this project.   

4) When the collected concrete and asphalt images (with and without cracks) were mixed in one 

big dataset for training and validation, the inference accuracy rate is unsatisfactory (< 0.7) due to 

different features of concrete and asphalt images. When two separate datasets, one for concrete 

and one for asphalt, were used for training and validation, the accuracy rate is high (> 0.96), 

signaling that crack identification of concrete structures and asphalt pavements needs to be 

implemented using separate machine learning models.  

5) The optimized ResNet deep learning model can well identify representative types of cracks (thin, 

thick, and multiple cracks) on the concrete and asphalt images. Also, the yellow boundary markers 

on the asphalt image can be excluded from the identified cracks, indicating that the developed 

method can get rid of the influence of background noises for crack detection.   
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